Pi Sayısının Tarihçesi Hakkında Bilgi
|Pi Sayısının Tarihçesi Hakkında Bilgi,Pi Sayısının Tarihçesi,Pi Sayısının Nedir,Pi Sayısının Resmi,Pi Sayısı Nasıl Yazılır
Pi Sayısının Tarihçesi Hakkında Bilgi
Pi sayısı, π = 3.14159…, bir dairenin çevresinin çapına bölümü ile elde edilen sayıdır. Bu oran her daire için aynı değeri aldığından, ”’π”’ sayısı bir matematiksel sabittir.
Kaynaklar pi sayısı için, ilk gerçek değerin, Archimedes tarafından kullanıldığını belirtir. Archimedes; pi sayısının değerini hesaplamak için bir yöntem vermiş ve pi değerini 3+1/7 ile 3+10/71 arasında tespit etmiştir. Bu iki kesrin ondalık sayı karşılığı 3,142 ve 3,1408 dir. Bu iki değer, pi sayısının, bugünkü bilinen gerçek değerine çok yakın olan bir değerdir. Ancak Archimedes’in gençlik yıllarında Mısır’da uzun bir süre öğrenim gördüğü bilinmekte.
Archimedes’in sağlığında İskenderiye’de Öklid’den ders aldığı, Öklid’in de Eski Mısır ve Mezopotamya Babil yöresinde uzun yıllar dolaşan bir matematikçi olduğu, bilinen tarihi bir gerçektir. İskenderiyeli tarihçi Herodot, metrika adlı eserinde pi sayısı için verdiği değer 3,71’dir. Bu değer, İskenderiyeli Heron’dan sonra gelen, eski Yunan ve ortaçağ matematikçileri tarafından farklı değerler kullanılmıştır. İskenderiyeli Heron’un verdiği yaklaşık değerin de, Mezopotamya menşeli olması ve Mezopotamyalılar’dan alınma takribi bir sonucu temsil etmesi muhtemeldir.
Pi sayısı üzerinde, Babilliler’in çok eski zamanlardan beri, kullanılan yaklaşık bir bilgiye sahip oldukları anlaşılmıştır. Genel olarak pi=3 değerini kullanıyorlardı. Bazı tabletlerde pi=3,125 değeri ne de rastlanılmıştır. Aydın Sayılı, adı geçen eserinde, “Mezopotamyalılar’da, idealleştirilmiş çemberlerle üçgenlerdeki geometrik münasebetler aracılığıyla, çözümlenen problemlerde teorikleştirilmiş ve soyutlaştırılmış bir durum mevcuttur” der. Böyle problemlerde sonuç hesaplanırken pi sayısı için, değerinin kullanılmış olduğunu belirtir.
Bu değeri; Mezopotamyalılar takribi sonuçlar için kullanmaktaydılar. Daha iyi yaklaşık sonuçlar elde etmek istedikleri zaman pi=3,125 değerini uygularlardı. Ancak pi sayısının; Mısırlılar’ınkinden ve Susa tabletlerinin gösterdiği değerden oldukça daha iyi bir değeri, ilkin Archimedes tarafından bulunmuştur. Kaynaklar; Mezopotamyalılar, yamuk alanı hesabı ile, silindir ve prizma hacim hesaplarını bildiklerini ve pi için de 3 değerini kullandıklarını belirtir. Fakat eski Babil çağına ait olup, Susa’da bulunmuş olan tabletlerde pi için kabul edilen değerin 3,125 olduğu anlaşılmaktadır.
Bugün bir veya çok bilinmeyenli cebir denklemleriyle çözdüğümüz türden birçok problemlere Babil tabletlerinde rastlanmıştır. Mesela: Bu tablette, bir dikdörtgenin eniyle boyunu veren sayılar birbiriyle çarpılır ve bu sayılar arasındaki fark, bu çarpıma eklenirse 153 elde ediliyor. Aynı sayılar birbirine eklenirse 27 çıkıyor. Bu şeklin eni, boyu ve yüzölçümü nedir sorusu soruluyor ve cevap olarak: 20, 7 ve 140 değerleri veriliyor.
Genellikle bilinen en basit pi sayısı pek fazla birşey ifade etmese de yaygınca kullanılır ve bu bakımdan anlamlıdır. Bu sayı aslında bir orandır ve dairenin çevresinin çapına bölümünden elde edilir. Bu oran 3,14 olarak bilinir. Bunu kendiniz de ölçebilirsiniz, mesela evde herhangi bir dairesel cisim bulun fakat mümkün olduğunca büyük olmasına dikkat edin. Elinizde bir bardak var diyelim, eğer bir mezura ile bardağın önce çevresini daha sonra da çapını ölçüp bölerseniz her zaman 3.14 sonucuna ulaşırsınız. Tabi sonucun aslına en yakın olması için gerçekten hassas bir ölçüm yapmak gerekir.
Yukarıdaki animasyonda pi sayısının ispatı olarak 1.27 inçlik çapa sahip bir dairenin doğrusal olarak açıldığında 4 inçlik bir mesafeye karşılık geldiği gösteriliyor. Anlaşılacağı üzere 4 inç(çevre) / 1.27 (çap) = 3.14′tür. Görüldüğü üzere pi sayısı aslında çok basit bir temele sahiptir ve değiştirilemez bir sabit orandır. Fakat aynı zamanda Pi sayısı bir irrasyonel sayı olduğundan, hiçbir zaman sonlu bir tamsayı düzeninde ifade edilemez ve virgülden sonra sonsuz sayıda tekrarsız rakam içerir. Babilliler’den beri ortadoğu ve akdeniz uygarlıklarının pi sayısının varlığından haberdar oldukları bilinmektedir.
Farklı antik uygarlıklar pi sayısı için farklı sayıları kullanmıştır. Örneğin MÖ 2000 yılı dolaylarında Babilliler π = 3 1/8, Antik Mısırlılar ise π = 256/81 yani yaklaşık 3,1605′i kullanmaktaydı. Yine de çok uzunca bir süre π’nin bir irrasyonel sayı olup olmadığı anlaşılamamıştır. 1761 yılında Johann Heinrich Lambert’in yayımladığı ispatla sabitin irrasyonel bir sayı olduğu kanıtlanmıştır. Günlük kullanımda basitçe 3,1416 olarak ifade edilmesine rağmen gerçek değerini ifade etmek için periyodik olarak tekrar etmeyen sonsuz sayıda basamağa ihtiyaç vardır. İlk 65 basamağa kadar ondalık açılımı şöyledir:
3, 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 5923
Günümüzde pi sayısının virgülden sonraki en fazla basamağını hesaplayabilmek üzere birtakım yarışmalar yapılmaktadır. Şu an rekorun virgülden sonra 73 milyar basamak olduğu bilinmektedir.
Tarihçesi
Pi sayısı Babiller, Eski Mısırlılar ve pek çok eski uygarlık tarafından biliniyordu. Onlar, tüm çemberlerin çevresinin çapına bölümünün sabit bir sayıya eşit olduğunu fark etmişlerdi. Bu sabit sayının bulunması artık çapı bilinen her çemberin çevresinin hesaplanmasına imkan tanıyordu. M.Ö. 2000 yılı civarında Babiller p sayısını 31/8 ya da 3,125 olarak kullanıyordu. Eski Yunanda karekök 10 ya da 3,162 sayısı kullanıldı. Arhimedes ise (M.Ö 287 – 212) 3 10/71 ve 3 1/7 sayısını p sayısı olarak kullandı.
M.S. 500 yılı civarında p sayısı için 3,1415929 olarak kullanıyordu. 1424 yılında İran’da virgülden sonraki on altı basamağı doğru olarak biliniyordu. 1596 yılında Alman Ludolph van Ceulen, p nin virgülden sonraki yirmi basamağını hesapladı ve bu sayı Avrupa’da Ludolph sabiti olarak bilindi. O tarihten sonra p sayısının virgülden sonraki milyarlarca basamağı hesaplanmıştır.
Eski çağlarda Çin’de de insanlar, pratikte bir dairenin çevre uzunluğunun, bu daire çapının üç mislini aşkın olduğunu kavramışlardır. Ancak kesin sayı hakkında farklı görüşler vardı. Zu Chongzhi’den önce Liu Hui adlı bir Çinli matematikçi, Pi ölçüsünün hesaplanmasında bilimsel bir “kesme yöntemi”ni, yani, Pi’yi daire içerisinde çizilen düzenli çokgenlerin çevre uzunluğuyla dairenin çevre uzunluğuna yakınlaşmaya çalışarak elde etme yöntemini önermiştir. Liu Hui, bu yöntem yoluyla ancak Pi’nin ondalık noktadan sonraki dördüncü rakamına kadar hesaplayabilmiştir. Zu Chongzhi, sonra bu temel üzerinde devamlı araştırmalar ve tekrarlı hesaplamalar yaparak, Pi’yi ondalık noktadan sonraki yedinci rakama kadar çıkarmış, (3.1415926 ve 3.1415927 rakamları arasında) ve üstelik, Pi’nin kesir şeklindeki takribi sayısını da hesaplamıştır. Zu Chongzhi’nin söz konusu neticeleri hangi yönteme dayanarak çıkardığı bilinmemektedir. Eğer Liu Hui’nin “kesme yöntemi”yle Pi elde edilmeye çalışılırsa, daire içerisinde 16 bin düzenli çokgen çizilerek hesaplanmalıdır. Bunun ne kadar zaman gerektireceği, ne kadar yorucu bir iş olacağı bellidir. Daha sonra yabancı matematikçilerin vardıkları sonuç, yaklaşık bin yıl önce yaşamış Zu Chongzhi’nin hesaplayarak elde ettiği Pi’ye denk gelmiştir. Tarihte üstün katkıda bulunmuş Zu Chongzhi’yi anmak için bazı yabancı matematikçiler, Pi olan π’ya “Zu ölçüsü” adının koyulmasını önerdiler.
Babilliler’den beri ortadoğu ve akdeniz uygarlıklarının π sayısının varlığından haberdar oldukları bilinmektedir. Farklı antik uygarlıklar pi sayısı için farklı sayıları kullanmıştır. Örneğin
Bugün Irak sınırları içinde, Bağdat’ın 100 km kadar guneyinde kalan, şehirde yaşanıldığı donemlerde ortasindan Fırat nehrinin gectigi, bulunan yazi tabletlerinden sehrin milatdan once 275 yilinda terkedildiginin sanildigi, halen firat’in dogusunda kalan bolumlerde kalintilarin oldugu, eski sehir.
MÖ 2000 yılı dolaylarında Babilliler π = 3 1/8, Antik Mısırlılar ise π = 256/81 yani yaklaşık 3,1605’i kullanmaktaydı. Yine de çok uzunca bir süre π’nin bir irrasyonel sayı olup olmadığı anlaşılamamıştır.
Johann Heinrich Lambert’in yayımladığı ispatla sabitin irrasyonel bir sayı olduğu kanıtlanmıştır.
Günlük kullanımda basitçe 3,1416 olarak ifade edilmesine rağmen gerçek değerini ifade etmek için periyodik olarak tekrar etmeyen sonsuz sayıda basamağa ihtiyaç vardır. İlk 65 basamağa kadar ondalık açılımı şöyledir:
3, 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 5923
Ferdinand von Lindemann tarafından 1882 senesinde ispatlanan bu gerçek, Pi’nin katsayıları tam sayı olan bir polinomun kökü olamayacağını ifade eder.
Pi sayısı matematikte çember ve yarı çapla doğrudan bağlantılı olmayan durumlarda da karşımıza çıkar. (pi) Sayısı:
Kısaca bir dairenin çevresinin çapına oranı, p sayısını verir. İnsanoğlu, aslında çok önemli vazifeleri olan bu sayı üzerinde çok düşünmüştür. Yıllarca tam olarak bir değer bulamamakla beraber, gerçek değerine en yakın sonuçları kullanabilmek için çaba sarfetmişlerdir.
p’ nin kronolojik gelişimine baktığımızda günümüzde dahi tam bir sonuç bulunamamıştır. Çeşitli formüller üretilmesine rağmen sadece her seferinde gerçek değere biraz daha yaklaşılmıştır.
Arşimet 3.1/7 ile 3.10/71 arasında bir sayı olarak hesapladı. Mısırlılar 3.1605, Babilliler 3.1/8, Batlamyus 3.14166 olarak kullandı. İtalyan Lazzarini 3.1415929, Fibonacci ise 3.141818 ile işlem yapıyordu. 18.yyda 140, 19yyda 500 basamağa kadar hesaplandı. İlk bilgisayarlarla 2035 basamağı hesaplanırken günümüzde milyonlarca basamağa kadar çıkılıyor. İşin ilginç tarafı, hâlâ tam bir sonuç yok. Herhangi bir yerinde devir olsa iş yine kolaylaşacak. Ama henüz öyle bir şeye de rastlanmadı. Şu anda bilinen değerden birkaç basamak:
p=3,141592653589793238462643383279502884197169399375105820
97494459230781640628620899862803482534211706798214808651328
23066470938446095505822317253594081284811174502841027…..